广大电子爱好者都有这样的体会,中、高档数字万用表虽有电容测试挡位,但测量范围一般仅为1pF~20μF,往往不能满足使用者的需要,给电容测量带来不便。本电路介绍的三位数显示电容测试表采用四块集成电路,电路简洁、容易制作、数字显示直观、精度较高,测量范围可达1nF~104μF。特别适合爱好者和电气维修人员自制和使用。
一、电路工作原理
电路原理如图2 所示。
图2 三位数字显示电容测试表电路图
该电容表电路由基准脉冲发生器、待测电容容量时间转换器、闸门控制器、译码器和显示器等部分组成。
待测电容容量时间转换器把所测电容的容量转换成与其容量值成正比的单稳时间td。基准脉冲发生器产生标准的周期计数脉冲。闸门控制器的开通时间就是单稳时间td。在td 时间内,周期计数脉冲通过闸门送到后面计数器计数,译码器译码后驱动显示器显示数值。计数脉冲的周期T 乘以显示器显示的计数值N 就是单稳时间td,由于td 与被测电容的容量成正比,所以也就知道了被测电容的容量。
图2 中,集成电路IC1B 电阻R7~R9 和电容C3 构成基准脉冲发生器(实质上是一个无稳多谐振荡器),其输出的脉冲信号周期T 与R7~R9 和C3 有关,在C3 固定的情况下通过量程开关K1b 对R7、R8、R9 的不同选择,可得到周期为11μs、1.1ms 和11ms 的三个脉冲信号。
IC1A、IC2、R1~R6、按钮AN 及C1 构成待测电容容量时间转换器(实质上是一个单稳电路)。按动一次AN,IC2B 的10 脚就产生一个负向窄脉冲触发IC1A,其5 脚输出一次单高电平信号。R3~R6 和待测电容CX 为单稳定时元件,单稳时间td=1.1(R3~R6)CX。IC4、IC2C、C5、C6、R10 构成闸门控制器和计数器,IC4 为CD4553,其12 脚是计数脉冲输入端,10 脚是计数使能端,低电位时CD4553 执行计数,13 脚是计数清零端,上升沿有效。当按动一下AN 后,IC4 的13 脚得到一个上升脉冲,计数器清零同时IC2C 的4 脚输出一个单稳低电平信号加到IC4 的10 脚,于是IC4 对从其12 脚输入的基准计数脉冲进行计数。当单稳时间结束后,IC4 的10 脚变为高电平,IC4 停止计数,最后IC4 通过分时传递方式把计数结果的个位、十位、百位由它的9 脚、7 脚、6 脚和5 脚循环输出对应的BCD 码。
IC3 构成译码器驱动器,它把IC4 送来的BCD 码译成十进制数字笔段码,经R11~R17限流后直接驱动七段数码管。集成电路CD4553 的15 脚、1 脚、2 脚为数字选择输出端,经R18~R20 选择脉冲送到三极管T1~T3 的基极使其轮流导通,这两部分电路配合就完成了三位十进制数字显示。
C7 的作用是当电源开启时在R10 上产生一个上升脉冲,对计数器自动清零。
二、元器件
电路中,IC1 选用NE556;IC2 选用CD4001;IC3 选用CD4543;IC4 选用CD4553。七段数码管可选用三字共阴极数码管。T1~T3 选用8550(或其它PNP 型三极管)。C1 不应大于0.01μF,C3 选用小型金属化电容。R3~R9 选用1/8W 金属膜电阻。其他元器件没有特殊要求,按电路标注选择即可。
三、调试方法
整个电路安装好后可装在一个塑料盒内,将数码管和量程转换开关装在面板上。在制作和调试时,关键是要调出11μs、1.1ms 和11ms 的三种标准脉冲信号,调试时需要借助一台示波器,通过调整分别R7、R8 和R9 等三个电阻的阻值,就可方便地得到这三个脉冲信号,电路中的R7、R8、R9 的阻值是实验数据仅供参考。电路其余部分无需调试,只要选择良好器件,安装正确无误,并在量程转换开关处标注相应倍率,就可得到一个经济实用、准确可靠的数字电容表。
四、使用方法
在测试电容时,把计数结果乘以所用量程的倍率得到的数值就是被测电容的容量。例如,当基准脉冲周期为1.1ms,定时电阻为10K 时,量程倍率为0.1μF,若测一个标称容量为4.7μF的电容,按动一下AN 后结果显示为49,该电容的容量就为49×0.1μF=4.9μF。需要说明的是,在使用1pF~999pF 量程时,由于分布电容的影响,测量结果减去分布电容值才是被测电容的准确值。可以这样测出该电容表的量程分布电容值,把量程打在1pF~999pF 档,在不接被测电容的情况下,按动一下AN 按钮,测的计数结果就是该挡的分布电容值,经实验该数值一般为10pF 左右。附表列出了各挡量程的组成关系。
基准脉冲周期 |
定时电阻R |
测量范围 |
倍率 |
11μs |
10MΩ |
1pF~999pF |
×1pF |
11μs |
100KΩ |
1nF~9.99nF |
×0.1nF |
11μs |
10KΩ |
10nF~999nF |
×1nF |
1.1ms |
10KΩ |
1μF~99.9μF |
×0.1μF |
1.1ms |
1KΩ |
100μF~9990μF |
×10μF |
|