串行通信是终端和主机之间的主要通信方式,通信波特率一般选择1800、4800、9600和 19200等。终端的类型有很多种,其通信速率也有很多种选择。主机怎样确定终端的通信速率呢?本文给出了一种简单、易行的方法:设定主机的接收波特率(以9600波特为例),终端发送一个特定的字符(以回车符为例),主机根据接收到的字符信息就可以确定终端的通信波特率。本文对这种方法予以详述。 1 基本方法 回车符的ASCII值为0x0D。串行通信时附加一个起始位和终止位,位的传输顺序一般是 先传低位再传高位。此时回车符的二进制表示方式为: 图1 回车符的位序列 串行通信中一个二进制位的传输时间(记为T)取决于通信的波特率,9600波特时一个 二进制位的传输时间是19200波特时一个二进制位传输时间的两倍,即:2*T19200=T 9600。因此,9600波特时一个位的传输时间,19200波特时可以传输两个位。同样地,9600波特传输两个位的时间在4800波特时只能传送一个位。主机设定接收波特率为9600,终端只有也以9600波特发送的字符,主机才能正确地接收。发送波特率高于或低于9600都会使主机接收到的字符发生错误。接收波特率为9600,终端以不同的波特率发送回车符时,主 机接收到的二进制序列如表1所示。 从表1中可以看出,除了19200和1800波特时两种特例情况,其他情形的二进制序列都是 9600波特时二进制序列的变换。取前十个二进制位与9600波特时的二进制位相对应。忽略缺少停止位‘1’引发的数据帧错误,把接收到的字符表示成字节方式(如表1的最右列所示)。例如:在发送速率为1200波特,接收速率为9600波特时,主机得到的字节是0x80,而不是正确的回车符0x0D。因为在不同的发送速率下(9600,4800,2400,1200)得到的字节不同,所以通过接收字符的判定就可以确定发送波特率。 发送波特率为19200时,其发送速度正好是接收速度(9600波特)的两倍,因此发送端 的两个二进制位会被接收端看作一个。取决于不同的串行接口硬件,‘01’和‘10’这两种二进制位组合可能被认为是‘1’或者‘0’。幸运的是,只有0~4位存在这样的歧义问题,后面的位因为都是停止位,所以都是‘1’。因此,发送速率为19200波特时接收到的字符其高半个字节为0xF。低半个字节可能是多个值中的一个,但不会是0x0,因为0x0D中有相邻 的两个‘1’,这就会至少在低半个字节中产生一个‘1’。因此,整个字节的形式为0xF?, 且低半个字节不为0。 表1 不同波特率下的二进制序列 波特率 | 接收到的二进制位序列 | 字节表示 | 19200 | 0 1 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 | 0xF? | 9600 | 0 1 0 1 1 0 0 0 0 1 | 0x0D | 4800 | 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 | 0xE6 | 2400 | 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 | 0x78 | 1800 | 0 0 0 0 0 x 1 1 1 1 x 0 0 0 0 0 1 1 1 1 | 0xE0 | 1800 | 0 0 0 0 0 x 1 1 1 1 x 0 0 0 0 0 1 1 1 1 | 0xF0 | 1200 | 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 | 0x80 | 600 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 | 0x00 | 300 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0x00 | 150 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0x00 | 110 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0x00 | 发送速率为1800波特时,因为 T1800=T9600*16/3, 而16/3 不是整数,接收端二进制位的状态转换时刻和9600波特不一一对应,引起在接收端的一个位接收周期内有状态发生变化的可能。表1中给出的第六个位(表示为x)就是这种情况。因为x有可能被看作‘1’,也有可能被看作‘0’,所以发送速率为1800波特时接收到的字节可能是0xE0或者0xF0。波特率为3600和7200时也有同样的问题,也可以采用同样的方法,但不确定的位数会增加,需要检测的字节种类也会更多。3600波特和7200波特的传输速率几乎不采用,因此这个问题并不严重。只要发送波特率在1200~19200之间,我们都可以 通过接收到的一个字符对此波特率进行唯一的判定。 2 低波特率的检测 当发送速率低于1200波特时,接收端收到的字节都是0x00,因此只能确定其速率低于12 00波特,而不可能再得到更多的信息。为了解决这个问题,可以在9600波特的速率下继续接收下一个字节信息。发送速率为600波特或更低时,一个位的发送时间要大于9600波特时整个字节的接收时间。因此,发送端每一个从‘1’(终止位)到‘0’(起始位)的跳变都会让接收端认为一个新的字节开始了。表2所示为600波特或更低的传输速率时接收端回车符的 二进制序列(只给出开始的一些位)。 表2 低波特率回车符的接收方式 波特率 | 9600波特二进制序列 | 时间差 (周期) | 时间差 (实时间) | 600 | 16 0's 16 1's 16 0's | 32 | 3.33ms | 300 | 32 0's 32 1's 32 0's | 64 | 6.66ms | 150 | 64 0's 64 1's 64 0's | 128 | 13.33ms | 110 | 87 0's 87 1's 87 0's | 174 | 18.13ms | 75 | 128 0's 128 1's 128 0's | 256 | 26.66ms | 50 | 192 0's 192 1's 192 0's | 384 | 4 0.00ms | 600波特时,第一个从‘1’到‘0’的跳变在初始化以后即刻发生。这个跳变让接收端 得到字节0x00。第二个跳变在初始化(16+16)*T9600秒以后发生,这会让接收端认 为另外一个字节开始接收了。一个二进制位的接收时间是T9600,所以串行接口电路 会在第一个跳变以后10* T9600秒提示第一个字节接收完毕,在(16+16+10)* T96 00秒以后提示第二个字节接收完毕。因此600波特时,第一个字节接收完毕和第二个字节 接收完毕的时间差是(16+16+10-10)* T9600=32* T9600秒。表2的第三列所示 是把这个时间差以T9600的个数表示。因为T9600=1/9600 秒=104.16毫秒,相 乘可以得到两个字节接收完毕的实时间差。不同发送波特率的时间差如表2的最后一列所示。有了这个时间差信息,就可以确定低传输速率时的波特率了:测定第一个和第二个字节的接收时间差,然后在时间差常数表(表2)里查出哪个波特率下的时间差与之最相近,对应的就是终端发送波特率。即使测定的时间差有些误差,一般也可以正确地确定波特率。 3 实现方式 通过以上分析,各种波特率都可以通过回车符的发送和接收信息来测定,算法实现的伪代码在本文的最后给出。应用实践证明了这种方法的有效性。 ; Pseudo code to determine what baud rate a transmitter is at,on the b asis of a single ; RETURN (0x0D) character received from it. Initialise receive baud rate to 9600 Wait for Byte to be received IF Byte = 0x00 THEN Start Timer REPEAT UNTIL (Timer > 50 ms OR New Byte Received) CASE Timer IN 1 ms-4 ms:?? 600 Baud 5 ms-10 ms:?? 300 Baud 11 ms-15 ms:?? 150 Baud 16 ms-22 ms:?? 110 Baud 23 ms-32 ms:?? 75 Baud 33 ms-49 ms:?? 50 Baud ELSE:?? Timed out; reset END CASE; ELSIF Byte >= 0xF1 THEN ?? 19200 Baud ELSE CASE Byte IN 0x0D:?? 9600 Baud 0xE6:?? 4800 Baud 0x78:?? 2400 Baud 0xE0,0xF0:?? 1800 Baud 0x80:?? 1200 Baud ELSE:?? Line noise; reset END CASE END IF 参考文献: 〔1〕赵依军等. 单片微机接口技术〔M〕.北京: 人民邮电出版社,1989. 〔2〕刘利. 软硬件技术参考大全〔M〕.北京: 学苑出版社,1993. 〔3〕张世一. 数字信号处理〔M〕. 北京:北京工业学院出版社,1987
|