小弟最近研究了一段时间的ARM Linux,想把进程管理方面的感受跟大家交流下,不对的地方多多指点 Process Creation and Termination Process Scheduling and Dispatching Process Switching Porcess Synchronization and support for interprocess communication Management of process control block --------from <Operating system:internals and design principles> 进程调度 Linux2.4.x是一个基于非抢占式的多任务的分时操作系统,虽然在用户进程的调度上采用抢占式策略,但是而在内核还是采用了轮转的方法,如果有个内核态的线程恶性占有CPU不释放,那系统无法从中解脱出来,所以实时性并不是很强。这种情况有望在Linux 2.6版本中得到改善,在2.6版本中采用了抢占式的调度策略。 内核中根据任务的实时程度提供了三种调度策略: - SCHED_OTHER为非实时任务,采用常规的分时调度策略;
- SCHED_FIFO为短小的实时任务,采用先进先出式调度,除非有更高优先级进程申请运行,否则该进程将保持运行至退出才让出CPU;
- SCHED_RR任务较长的实时任务,由于任务较长,不能采用FIFO的策略,而是采用轮转式调度,该进程被调度下来后将被置于运行队列的末尾,以保证其他实时进程有机会运行。
需要说明的是,SCHED_FIFO和SCHED_RR两种调度策略之间没有优先级上的区别,主要的区别是任务的大小上。另外,task_struct结构中的policy中还包含了一个SCHED_YIELD位,置位时表示该进程主动放弃CPU。 在上述三种调度策略的基础上,进程依照优先级的高低被分别调系统。优先级是一些简单的整数,它代表了为决定应该允许哪一个进程使用CPU的资源时判断方便而赋予进程的权值——优先级越高,它得到CPU时间的机会也就越大。 在Linux中,非实时进程有两种优先级,一种是静态优先级,另一种是动态优先级。实时进程又增加了第三种优先级,实时优先级。 - 静态优先级(priority)——被称为“静态”是因为它不随时间而改变,只能由用户进行修改。它指明了在被迫和其它进程竞争CPU之前该进程所应该被允许的时间片的最大值(20)。
- 动态优先级(counter)——counter 即系统为每个进程运行而分配的时间片,Linux兼用它来表示进程的动态优先级。只要进程拥有CPU,它就随着时间不断减小;当它为0时,标记进程重新调度。它指明了在当前时间片中所剩余的时间量(最初为20)。
- 实时优先级(rt_priority)——值为1000。Linux把实时优先级与counter值相加作为实时进程的优先权值。较高权值的进程总是优先于较低权值的进程,理L垠I-;供Yo6网n,如果一个进程不是实时进程,其优先权就远小于1000,所以实时进程总是优先。
在每个tick到来的时候(也就是时钟中断发生),系统减小当前占有CPU的进程的counter,如果counter减小到0,则将need_resched置1,中断返回过程中进行调度。update_process_times()为时钟中断处理程序调用的一个子函数: void update_process_times(int user_tick) { struct task_struct *p = current; int cpu = smp_processor_id(), system = user_tick ^ 1; update_one_process(p, user_tick, system, cpu); if (p->pid) { if (--p->counter <= 0) { p->counter = 0; p->need_resched = 1; } if (p->nice > 0) kstat.per_cpu_nice[cpu] += user_tick; else kstat.per_cpu_user[cpu] += user_tick; kstat.per_cpu_system[cpu] += system; } else if (local_bh_count(cpu) || local_irq_count(cpu) > 1) kstat.per_cpu_system[cpu] += system; } Linux中进程的调度使在schedule()函数中实现的,该函数在下面的ARM汇编片断中被调用到: /* * This is the fast syscall return path. We do as little as * possible here, and this includes saving r0 back into the SVC * stack. */ ret_fast_syscall: ldr r1, [tsk, #TSK_NEED_RESCHED] ldr r2, [tsk, #TSK_SIGPENDING] teq r1, #0 @ need_resched || sigpending teqeq r2, #0 bne slow fast_restore_user_regs /* * Ok, we need to do extra processing, enter the slow path. */
slow: str r0, [sp, #S_R0+S_OFF]! @ returned r0 b 1f
/* * "slow" syscall return path. "why" tells us if this was a real syscall. */ reschedule: bl SYMBOL_NAME(schedule) ENTRY(ret_to_user) ret_slow_syscall: ldr r1, [tsk, #TSK_NEED_RESCHED] ldr r2, [tsk, #TSK_SIGPENDING] 1: teq r1, #0 @ need_resched => schedule() bne reschedule @如果需要重新调度则调用schedule teq r2, #0 @ sigpending => do_signal() blne __do_signal restore_user_regs 而这段代码在中断返回或者系统调用返回中反复被调用到。 1. 进程状态转换时: 如进程终止,睡眠等,当进程要调用sleep()或exit()等函数使进程状态发生改变时,这些函数会主动调用schedule()转入进程调度。 2. 可运行队列中增加新的进程时; ENTRY(ret_from_fork) bl SYMBOL_NAME(schedule_tail) get_current_task tsk ldr ip, [tsk, #TSK_PTRACE] @ check for syscall tracing mov why, #1 tst ip, #PT_TRACESYS @ are we tracing syscalls? beq ret_slow_syscall mov r1, sp mov r0, #1 @ trace exit [IP = 1] bl SYMBOL_NAME(syscall_trace) b ret_slow_syscall @跳转到上面的代码片断 3. 在时钟中断到来后:Linux初始化时,设定系统定时器的周期为10毫秒。当时钟中断发生时,时钟中断服务程序timer_interrupt立即调用时钟处理函数do_timer( ),在do_timer()会将当前进程的counter减1,如果counter为0则置need_resched标志,在从时钟中断返回的过程中会调用schedule. 4. 进程从系统调用返回到用户态时;判断need_resched标志是否置位,若是则转入执行schedule()。系统调用实际上就是通过软中断实现的,下面是ARM平台下软中断处理代码。 .align 5 ENTRY(vector_swi) save_user_regs zero_fp get_scno enable_irqs ip str r4, [sp, #-S_OFF]! @ push fifth arg get_current_task tsk ldr ip, [tsk, #TSK_PTRACE] @ check for syscall tracing bic scno, scno, #0xff000000 @ mask off SWI op-code eor scno, scno, #OS_NUMBER << 20 @ check OS number adr tbl, sys_call_table @ load syscall table pointer tst ip, #PT_TRACESYS @ are we tracing syscalls? bne __sys_trace adrsvc al, lr, ret_fast_syscall @ 装载返回地址,用于在跳转调用后返回到 @上面的代码片断中的ret_fast_syscall cmp scno, #NR_syscalls @ check upper syscall limit ldrcc pc, [tbl, scno, lsl #2] @ call sys_* routine add r1, sp, #S_OFF 2: mov why, #0 @ no longer a real syscall cmp scno, #ARMSWI_OFFSET eor r0, scno, #OS_NUMBER << 20 @ put OS number back bcs SYMBOL_NAME(arm_syscall) b SYMBOL_NAME(sys_ni_syscall) @ not private func 5. 内核处理完中断后,进程返回到用户态。 6. 进程主动调用schedule()请求进行进程调度。 schedule()函数分析: /* * 'schedule()' is the scheduler function. It's a very simple and nice * scheduler: it's not perfect, but certainly works for most things. * * The goto is "interesting". * * NOTE!! Task 0 is the 'idle' task, which gets called when no other * tasks can run. It can not be killed, and it cannot sleep. The 'state' * information in task[0] is never used. */ asmlinkage void schedule(void) { struct schedule_data * sched_data; struct task_struct *prev, *next, *p; struct list_head *tmp; int this_cpu, c; spin_lock_prefetch(&runqueue_lock); if (!current->active_mm) BUG(); need_resched_back: prev = current; this_cpu = prev->processor; if (unlikely(in_interrupt())) { printk("Scheduling in interrupt/n"); BUG(); } release_kernel_lock(prev, this_cpu); /* * 'sched_data' is protected by the fact that we can run * only one process per CPU. */ sched_data = & aligned_data[this_cpu].schedule_data; spin_lock_irq(&runqueue_lock); /* move an exhausted RR process to be last.. */ if (unlikely(prev->policy == SCHED_RR)) /* * 如果采用轮转法调度,则重新检查counter是否为0, 若是则将其挂到运行队列的最后 */ if (!prev->counter) { prev->counter = NICE_TO_TICKS(prev->nice); move_last_runqueue(prev); } switch (prev->state) { case TASK_INTERRUPTIBLE: /* * 如果是TASK_INTERRUPTIBLE,并且能够唤醒它的信号已经来临, * 则将状态置为TASK_RUNNING */ if (signal_pending(prev)) { prev->state = TASK_RUNNING; break; } default: del_from_runqueue(prev); case TASK_RUNNING:; } prev->need_resched = 0; /* * this is the scheduler proper: */ repeat_schedule: /* * Default process to select.. */ next = idle_task(this_cpu); c = -1000; list_for_each(tmp, &runqueue_head) { /* * 遍历运行队列,查找优先级最高的进程, 优先级最高的进程将获得CPU */ p = list_entry(tmp, struct task_struct, run_list); if (can_schedule(p, this_cpu)) { /* * goodness()中,如果是实时进程,则weight = 1000 p->rt_priority, * 使实时进程的优先级永远比非实时进程高 */ int weight = goodness(p, this_cpu, prev->active_mm); if (weight > c) //注意这里是”>”而不是”>=”,如果权值相同,则先来的先上 c = weight, next = p; } } /* Do we need to re-calculate counters? */ if (unlikely(!c)) { /* * 如果当前优先级为0,那么整个运行队列中的进程将重新计算优先权 */ struct task_struct *p; spin_unlock_irq(&runqueue_lock); read_lock(&tasklist_lock); for_each_task(p) p->counter = (p->counter >> 1) NICE_TO_TICKS(p->nice); read_unlock(&tasklist_lock); spin_lock_irq(&runqueue_lock); goto repeat_schedule; } /* * from this point on nothing can prevent us from * switching to the next task, save this fact in sched_data. */ sched_data->curr = next; task_set_cpu(next, this_cpu); spin_unlock_irq(&runqueue_lock); if (unlikely(prev == next)) { /* We won't go through the normal tail, so do this by hand */ prev->policy &= ~SCHED_YIELD; goto same_process; } kstat.context_swtch ; /* * there are 3 processes which are affected by a context switch: * * prev == .... ==> (last => next) * * It's the 'much more previous' 'prev' that is on next's stack, * but prev is set to (the just run) 'last' process by switch_to(). * This might sound slightly confusing but makes tons of sense. */ prepare_to_switch(); { struct mm_struct *mm = next->mm; struct mm_struct *oldmm = prev->active_mm; if (!mm) { //如果是内核线程的切换,则不做页表处理 if (next->active_mm) BUG(); next->active_mm = oldmm; atomic_inc(&oldmm->mm_count); enter_lazy_tlb(oldmm, next, this_cpu); } else { if (next->active_mm != mm) BUG(); switch_mm(oldmm, mm, next, this_cpu); //如果是用户进程,切换页表 } if (!prev->mm) { prev->active_mm = NULL; mmdrop(oldmm); } } /* * This just switches the register state and the stack. */ switch_to(prev, next, prev); __schedule_tail(prev); same_process: reacquire_kernel_lock(current); if (current->need_resched) goto need_resched_back; return; } switch_mm中是进行页表的切换,即将下一个的pgd的开始物理地址放入CP15中的C2寄存器。进程的pgd的虚拟地址存放在task_struct结构中的pgd指针中,通过__virt_to_phys宏可以转变成成物理地址。 static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next, struct task_struct *tsk, unsigned int cpu) { if (prev != next) cpu_switch_mm(next->pgd, tsk); } #define cpu_switch_mm(pgd,tsk) cpu_set_pgd(__virt_to_phys((unsigned long)(pgd))) #define cpu_get_pgd() / ({ / unsigned long pg; / __asm__("mrc p15, 0, %0, c2, c0, 0" / : "=r" (pg)); / pg &= ~0x3fff; / (pgd_t *)phys_to_virt(pg); / }) switch_to()完成进程上下文的切换,通过调用汇编函数__switch_to完成,其实现比较简单,也就是保存prev进程的上下文信息,该上下文信息由context_save_struct结构描述,包括主要的寄存器,然后将next的上下文信息读出,信息保存在task_struct中的thread.save中TSS_SAVE标识了thread.save在task_struct中的位置。 /* * Register switch for ARMv3 and ARMv4 processors * r0 = previous, r1 = next, return previous. * previous and next are guaranteed not to be the same. */ ENTRY(__switch_to) stmfd sp!, {r4 - sl, fp, lr} @ Store most regs on stack mrs ip, cpsr str ip, [sp, #-4]! @ Save cpsr_SVC str sp, [r0, #TSS_SAVE] @ Save sp_SVC ldr sp, [r1, #TSS_SAVE] @ Get saved sp_SVC ldr r2, [r1, #TSS_DOMAIN] ldr ip, [sp], #4 mcr p15, 0, r2, c3, c0 @ Set domain register msr spsr, ip @ Save tasks CPSR into SPSR for this return ldmfd sp!, {r4 - sl, fp, pc}^ @ Load all regs saved previously struct context_save_struct { unsigned long cpsr; unsigned long r4; unsigned long r5; unsigned long r6; unsigned long r7; unsigned long r8; unsigned long r9; unsigned long sl; unsigned long fp; unsigned long pc; };
|