ARM体系结构中,把复位、中断、快速中断等都看作‘异常’,当这些‘异常’发生时,CPU会到固定地址处去找指令,他们对应的地址如下:
地址 | 异常类型 | 进入时的工作模式 | 0x00000000 | Reset | Supervisor | 0x00000004 | Und | Undefined | 0x00000008 | Soft interupt | Supervisor | 0x0000000c | Abort(prefetch) | Abort | 0x00000010 | Abort(data) | Abort | 0x00000014 | Reserved | Reserved | 0x00000018 | IRQ | IRQ | 0x0000001c | FIQ | FIQ | 首先要明确的一点就是,无论内存地址空间是如何映射的,以上这些地址都不会变,比如当有快速中断发生时,ARM将铁定到0X0000001C这个地址处取指令。这也是BOOTLOADER把操作系统引导以后,内存必须重映射的原因!否则操作系统不能真正接管整套系统! LINUX启动以后要初始化这些区域,初始化代码在main.c中的start_kernel()中,具体是调用函数trap_ini()来实现的。如下面所示(具体可参照entry-armv.S): .LCvectors: swi SYS_ERROR0 b __real_stubs_start + (vector_undefinstr - __stubs_start) ldr pc, __real_stubs_start + (.LCvswi - __stubs_start) b __real_stubs_start + (vector_prefetch - __stubs_start) b __real_stubs_start + (vector_data - __stubs_start) b __real_stubs_start + (vector_addrexcptn - __stubs_start) b __real_stubs_start + (vector_IRQ - __stubs_start) b __real_stubs_start + (vector_FIQ - __stubs_start)
ENTRY(__trap_init) stmfd sp!, {r4 - r6, lr} adr r1, .LCvectors @ set up the vectors ldmia r1, {r1, r2, r3, r4, r5, r6, ip, lr} stmia r0, {r1, r2, r3, r4, r5, r6, ip, lr} add r2, r0, #0x200 adr r0, __stubs_start @ copy stubs to 0x200 adr r1, __stubs_end 1: ldr r3, [r0], #4 str r3, [r2], #4 cmp r0, r1 blt 1b LOADREGS(fd, sp!, {r4 - r6, pc}) 以上可以看出这个函数初始化了中断向量,实际上把相应的跳转指令拷贝到了对应的地址。 当发生中断时,不管是从用户模式还是管理模式调用的,最终都要调用do_IRQ(): __irq_usr: sub sp, sp, #S_FRAME_SIZE stmia sp, {r0 - r12} @ save r0 - r12 ldr r4, .LCirq add r8, sp, #S_PC ldmia r4, {r5 - r7} @ get saved PC, SPSR stmia r8, {r5 - r7} @ save pc, psr, old_r0 stmdb r8, {sp, lr}^ alignment_trap r4, r7, __temp_irq zero_fp 1: get_irqnr_and_base r0, r6, r5, lr movne r1, sp adrsvc ne, lr, 1b @ @ routine called with r0 = irq number, r1 = struct pt_regs * @ bne do_IRQ @ 调用do_IRQ来实现具体的中断处理 mov why, #0 get_current_task tsk b ret_to_user 对于以上代码,在很多文章中都有过分析,这里不再赘述。 Linux每个中断通过一个结构irqdesc来描述,各中断的信息都在这个结构中得以体现: struct irqdesc { unsigned int nomask : 1; /* IRQ does not mask in IRQ */ unsigned int enabled : 1; /* IRQ is currently enabled */ unsigned int triggered: 1; /* IRQ has occurred */ unsigned int probing : 1; /* IRQ in use for a probe */ unsigned int probe_ok : 1; /* IRQ can be used for probe */ unsigned int valid : 1; /* IRQ claimable */ unsigned int noautoenable : 1; /* don't automatically enable IRQ */ unsigned int unused :25; void (*mask_ack)(unsigned int irq); /* Mask and acknowledge IRQ */ void (*mask)(unsigned int irq); /* Mask IRQ */ void (*unmask)(unsigned int irq); /* Unmask IRQ */ struct irqaction *action; /* * IRQ lock detection */ unsigned int lck_cnt; unsigned int lck_pc; unsigned int lck_jif; };
在具体的ARM芯片中会有很多的中断类型,每一种类型的中断用以上结构来表示: struct irqdesc irq_desc[NR_IRQS]; /* NR_IRQS根据不同的MCU会有所区别*/ 在通过request_irq()函数注册中断服务程序的时候,将会把中断向量和中断服务程序对应起来。 我们来看一下request_irq的源码: int request_irq(unsigned int irq, void (*handler)(int, void *, struct pt_regs *), unsigned long irq_flags, const char * devname, void *dev_id) { unsigned long retval; struct irqaction *action; if (irq >= NR_IRQS || !irq_desc[irq].valid || !handler || (irq_flags & SA_SHIRQ && !dev_id)) return -EINVAL; action = (struct irqaction *)kmalloc(sizeof(struct irqaction), GFP_KERNEL); if (!action) /* 生成action结构*/ return -ENOMEM; action->handler = handler; action->flags = irq_flags; action->mask = 0; action->name = devname; action->next = NULL; action->dev_id = dev_id; retval = setup_arm_irq(irq, action); /*把中断号irq和action 对应起来*/ if (retval) kfree(action); return retval; } 其中第一个参数irq就是中断向量,第二个参数即是要注册的中断服务程序。很多同仁可能疑惑的是,我们要注册的中断向量号是怎么确定的呢?这要根据具体芯片的中断控制器,比如三星的S3C2410,需要通过读取其中的中断状态寄存器,来获得是哪个设备发生了中断: if defined(CONFIG_ARCH_S3C2410) #include <asm/hardware.h> .macro disable_fiq .endm .macro get_irqnr_and_base, irqnr, irqstat, base, tmp mov r4, #INTBASE @ virtual address of IRQ registers ldr irqnr, [r4, #0x8] @ read INTMSK 中断掩码寄存器 ldr irqstat, [r4, #0x10] @ read INTPND 中断寄存器 bics irqstat, irqstat, irqnr bics irqstat, irqstat, irqnr beq 1002f mov irqnr, #0 1001: tst irqstat, #1 bne 1002f @ found IRQ add irqnr, irqnr, #1 mov irqstat, irqstat, lsr #1 cmp irqnr, #32 bcc 1001b 1002: .endm .macro irq_prio_table .endm 以上代码也告诉了我们,中断号的确定,其实是和S3C2410手册中SRCPND寄存器是一致的,即: /* Interrupt Controller */ #define IRQ_EINT0 0 /* External interrupt 0 */ #define IRQ_EINT1 1 /* External interrupt 1 */ #define IRQ_EINT2 2 /* External interrupt 2 */ #define IRQ_EINT3 3 /* External interrupt 3 */ #define IRQ_EINT4_7 4 /* External interrupt 4 ~ 7 */ #define IRQ_EINT8_23 5 /* External interrupt 8 ~ 23 */ #define IRQ_RESERVED6 6 /* Reserved for future use */ #define IRQ_BAT_FLT 7 #define IRQ_TICK 8 /* RTC time tick interrupt */ #define IRQ_WDT 9 /* Watch-Dog timer interrupt */ #define IRQ_TIMER0 10 /* Timer 0 interrupt */ #define IRQ_TIMER1 11 /* Timer 1 interrupt */ #define IRQ_TIMER2 12 /* Timer 2 interrupt */ #define IRQ_TIMER3 13 /* Timer 3 interrupt */ #define IRQ_TIMER4 14 /* Timer 4 interrupt */ #define IRQ_UART2 15 /* UART 2 interrupt */ #define IRQ_LCD 16 /* reserved for future use */ #define IRQ_DMA0 17 /* DMA channel 0 interrupt */ #define IRQ_DMA1 18 /* DMA channel 1 interrupt */ #define IRQ_DMA2 19 /* DMA channel 2 interrupt */ #define IRQ_DMA3 20 /* DMA channel 3 interrupt */ #define IRQ_SDI 21 /* SD Interface interrupt */ #define IRQ_SPI0 22 /* SPI interrupt */ #define IRQ_UART1 23 /* UART1 receive interrupt */ #define IRQ_RESERVED24 24 #define IRQ_USBD 25 /* USB device interrupt */ #define IRQ_USBH 26 /* USB host interrupt */ #define IRQ_IIC 27 /* IIC interrupt */ #define IRQ_UART0 28 /* UART0 transmit interrupt */ #define IRQ_SPI1 29 /* UART1 transmit interrupt */ #define IRQ_RTC 30 /* RTC alarm interrupt */ #define IRQ_ADCTC 31 /* ADC EOC interrupt */ #define NORMAL_IRQ_OFFSET 32 这些宏定义在文件irqs.h中,大家可以看到它的定义取自S3C2410的文档。 总结: linux在初始化的时候已经把每个中断向量的地址准备好了!就是说添加中断服务程序的框架已经给出,当某个中断发生时,将会到确定的地址处去找指令,所以我们做驱动程序时,只需要经过request_irq()来挂接自己编写的中断服务程序即可。 另:对于快速中断,linux在初始化时是空的,所以要对它挂接中断处理程序,就需要单独的函数set_fiq_handler()来实现,此函数在源文件fiq.c中,有兴趣的读者可进一步研究。
|