加入收藏 | 设为首页 | 会员中心 | 我要投稿 | RSSRSS-巴斯仪表网
您当前的位置:首页 > 电子发烧 > 单片机学习

用PIC18F458 的CAN 模块实现CAN 总线通信

时间:2013-09-03  来源:123485.com  作者:9stone

    CAN(Controller Area Network)即控制器区域网,是一种主要用于各种设备监测及控制的网络。CAN 具有独特的设计思想, 良好的功能特征和极高的可靠性,现场抗干扰能力强。其在国内外工业控制领域已经被广泛应用, 成为最有发展前途的现场总线之一。
    美国微芯公司的PIC18F458 单片机集成了CAN 通信接口,执行Bosch 公司的CAN2.0A/B 协议。它能支持CAN1.2、CAN2.0A、CAN2.0B 协议的旧版本和CAN2.0B现行版本。使用PIC18F458 单片机的嵌入式系统, 可以很方便的利用CAN 总线与外界进行数据交换。它的优点是电路接口比较简单,只需很少的外围电路就可实现CAN 通信, 受硬件限制比较少;软件编程容易实现所需功能, 只需对相关寄存器进行正确设置即可。

1 硬件接口电路
    PIC18F458 与CAN 驱动芯片PCA82C250T 的接口电路如图1 所示。PCA82C250T 是驱动CAN 控制器和物理总线间的接口, 提供对总线的差动发送和接收功能。电阻R 作为CAN 终端的匹配电阻;电感L 起滤波作用。
 

2 CAN 控制器的操作
2.1 初始化CAN 控制
    在使用CAN 之前, 必须对它的一些内部寄存器进行设置, 如CAN 控制寄存器CANCON 、波特率寄存器BRGCONx 的设置以及对邮箱进行初始化。
    波特率寄存器BRGCONx(x=1,2, 3)决定了CAN 控制器的波特率、采样次数、同步跳转宽度和重同步方式,对波特率寄存器的配置步骤如下:

  1.  设置CANCON 寄存器中的C A N 操作方式请求位为1xx,即REQOP=1xx;
  2.  判断CANSTAT 寄存器中的操作方式状态位是否为100,即OPMODE 是否为100,如OPMODE=100 则进入下一步;
  3.  设置BRGCONx(x=1,2,3)寄存器,即配置正确的波特率, 同步跳转宽度、采样次数和重同步方式;
  4.  设置发送邮箱和接收邮箱的标识符、邮箱数据长度、屏蔽寄存器、滤波寄存器以及初始化邮箱的数据区;
  5.  设置CANCON 寄存器中的CAN 操作方式请求位为000,即REQOP=000,使CAN 模块进入正常工作方式;
  6.  判断CANSTAT 寄存器中的操作方式状态位是否为000,即OPMODE 是否为000,如OPMODE=000 则进入下一步;
  7.  寄存器配置和邮箱初始化完成后,进入正常工作方式。

初始化流程图如图2 所示。
 
2.2 信息的发送
    PIC18F458 有3 个发送邮箱缓冲器,每一个发送缓冲器的数据长度可以设置为1 ~ 8 个字节长度, 信息发送的具体步骤如下:
① 初始化发送邮箱;
② 设置相应的发送请求位为1 ,即TXBxCON bits.TXREQ=1(x=1,2,3);
③ 若CAN 总线允许发送, 则启动最高优先级信息的发送;
④ 若发送成功,则TXREQ 被清零,TXBxIF 被置1,如果中断被使能, 则会产生中断;
⑤ 若信息发送失败,则TXREQ 保持为1 ,并置位相应的状态标志。

2.3 信息的接收
    PIC18F458 有2 个具有多重接收滤波器的完全接收缓冲器和1 个单独信息组合的缓冲器。接收邮箱初始化时,要设置其标识符及相关的屏蔽寄存器、接收优先级等。
    MAB 寄存器接收所有来自总线的下一条信息,RXB0 和RXB1 则接收来自协议驱动的完整信息。MAB 接收所有信息, 但是只有满足过滤条件的信息才被传送到RXBx 中。

3 软件设计
    下面的程序例程实现的是发送缓冲器0 向接收缓冲器0 发送数据的自测试模式, 其中接收采用中断方式,发送采用查询方式。该程序实现了PIC18F458 单片机CAN 模块的最小程序, 经过适当修改即可用于实际工程程序中, 并在实现工程中验证了它的正确性。
#include <p18f458.h>
int CAN_FLAG;
voidinitcan(){
TRISB=(TRISB|0X08)&0XFB;
CANCON=0X80;
while(CANSTAT&0X80==0)continue;
BRGCON1=0X01;
BRGCON2=0X90;
BRGCON3=0X42;
TXB0CON=0X03;
TXB0SIDH=0XFF;
TXB0SIDL=0XE0;
TXB0DLC=0X08;
TXB0D0=0X00;
TXB0D1=0X01;
TXB0D2=0X02;
TXB0D3=0X03;
TXB0D4=0X04;
TXB0D5=0X05;
TXB0D6=0X06;
TXB0D7=0X07;
RXB0SIDH=0XFF;
RXB0SIDL=0XE0;
RXB0CON=0X20;
RXB0DLC=0X08;
RXB0D0=0X00;
RXB0D1=0X00;
RXB0D2=0X00;
RXB0D3=0X00;
RXB0D4=0X00;
RXB0D5=0X00;
RXB0D6=0X00;
RXB0D7=0X00;
RXF0SIDH=0XFF;
RXF0SIDL=0XE0;
RXM0SIDH=0X00;
RXM0SIDL=0X00;
CANCON=0X40;
while(CANSTAT&0X40==0)continue;
PIR3=0X00;
PIE3=0X01;
IPR3=0X01;
}
#pragma interrupt can_isr
#pragma code low_ISR=0x18
void low_ISR() {
_asm
gotocan_isr
_endasm
}
#pragma code
voidcan_isr() {
if(PIR3bits.RXB0IF==1)CAN_FLAG=1;
PIR3bits.RXB0IF=0;
RXB0CONbits.RXFUL=0;
}
main(){
INTCON=0x00;
initcan();
W D T C O N = 0 ;
INTCON=0xc0;
while(1) {
TXB0CONbits.TXREQ=1;
while(PIR3bits.TXB0IF!=1)continue;
while(CAN_FLAG==0)continue;
CAN_FLAG=0;
TXB0CONbits.TXREQ=0;
TXB0D0=RXB0D0+1;
TXB0D1=RXB0D1+1;
TXB0D2=RXB0D2+1;
TXB0D3=RXB0D3+1;
TXB0D4=RXB0D4+1;
TXB0D5=RXB0D5+1;
TXB0D6=RXB0D6+1;
TXB0D7=RXB0D7+1;
}
}


分享到:
来顶一下
返回首页
返回首页
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表
栏目导航->单片机学习
  • 电子应用基础
  • 电源技术
  • 无线传输技术
  • 信号处理
  • PCB设计
  • EDA技术
  • 单片机学习
  • 电子工具设备
  • 技术文章
  • 精彩拆解欣赏
  • 推荐资讯
    使用普通运放的仪表放大器
    使用普通运放的仪表放
    3V与5V混合系统中逻辑器接口问题
    3V与5V混合系统中逻辑
    数字PID控制及其改进算法的应用
    数字PID控制及其改进
    恶劣环境下的高性价比AD信号处理数据采集系统
    恶劣环境下的高性价比
    栏目更新
    栏目热门