一、自旋锁 自旋就是自己连续的循环等待。如果你有抱着你的爱人旋转的经历,那么你应该知道一件事情,为了安全,你不能旋转太久,你的爱人如果头昏,也想你早日释放。是的,自旋的缺点,就是它频繁的循环直到等待锁的释放,将它用于可以快速完成的代码中才好。
自旋不能抢占,但能中断。 相关话题:SMP和cpu。多个cpu和单个cpu。很多书说自旋锁只能在多处理机中使用,这是不正确的。 首先定义 Spinlock_t lock; 对不起,我只能找到arm平台的锁了 /* * ARMv6 Spin-locking. * * We (exclusively) read the old value, and decrement it. If it * hits zero, we may have won the lock, so we try (exclusively) * storing it. * * Unlocked value: 0 * Locked value: 1 */ typedef struct { volatile unsigned int lock; #ifdef CONFIG_PREEMPT unsigned int break_lock; #endif } spinlock_t; 补上x86平台 #define SPINLOCK_MAGIC 0x1D244B3C typedef struct { unsigned long magic; volatile unsigned long lock; volatile unsigned int babble; const char *module; // 所属模块 char *owner; int oline; } spinlock_t; Lock为0时可以用,1是等待。0像锁孔,当没有钥匙插进去时,它才可以插进去 怎么初始化呢? #define spin_lock_init(x) do { (x)->magic = SPINLOCK_MAGIC; (x)->lock = 0; ;0初始化,表示可用 (x)->babble = 5; (x)->module = __FILE__; (x)->owner = NULL; (x)->oline = 0; } while (0) 定义一个自旋锁的方法很有意思, Spinlock_t lock=?????
可以通过spin_lock Spin_lock_irqsave 来调用自旋锁,后者不允许中断。前者有可能在上锁中发生中断。 还有spin_trylock 这是一个绝不妥协的函数,它不等待。 恢复为spin_unlock Spin_unlock_irqrestore
考查下面代码 #define spin_lock_irqsave(lock, flags) _spin_lock_irqsave(lock, flags) #define _spin_lock_irqsave(lock, flags) do { local_irq_save(flags); 保存中断请求标志 preempt_disable(); 不允许抢占 _raw_spin_lock(lock); __acquire(lock); } while (0) 二、自旋锁综合使用 下面是一个使用的例子,你可以使用source insight查到它 /* never called when PTRS_PER_PMD > 1 */ void pgd_dtor(void *pgd, kmem_cache_t *cache, unsigned long unused) { unsigned long flags; /* can be called from interrupt context */ spin_lock_irqsave(&pgd_lock, flags); 枷锁 pgd_list_del(pgd); spin_unlock_irqrestore(&pgd_lock, flags); 释放 } 中断枷锁 #define spin_lock_irqsave(lock, flags) _spin_lock_irqsave(lock, flags) 分析 unsigned long __lockfunc _spin_lock_irqsave(spinlock_t *lock) { unsigned long flags; local_irq_save(flags); 将寄存器存入flags,并关中断 preempt_disable(); 抢占锁 _raw_spin_lock_flags(lock, flags); 枷锁 return flags; } EXPORT_SYMBOL(_spin_lock_irqsave); 继续 /* For spinlocks etc */ #define local_irq_save(x) __asm__ __volatile__("pushfl ; popl %0 ; cli":"=g" (x): /* no input */ :"memory") 将标志寄存器的内容放在内存x中。请查看gcc汇编 继续 static inline void _raw_spin_lock_flags (spinlock_t *lock, unsigned long flags) { #ifdef CONFIG_DEBUG_SPINLOCK if (unlikely(lock->magic != SPINLOCK_MAGIC)) { printk("eip: %p", __builtin_return_address(0)); BUG(); } #endif __asm__ __volatile__( spin_lock_string_flags :"=m" (lock->slock) : "r" (flags) : "memory"); } 继续 #define spin_lock_string_flags "1: " "lock ; decb %0 " ;lock总线锁住,原子操作 "jns 4f " "2: " "testl $0x200, %1 " "jz 3f " "sti " "3: " "rep;nop " "cmpb $0, %0 " "jle 3b " "cli " "jmp 1b" "4: " 理解一下大概意思,就可以了。当lock-1后大于等于0就可以关中断继续执行了,否则nop空操作。Nop期间,cpu可以执行其他任务的代码。 解锁 #define spin_unlock_irqrestore(lock, flags) _spin_unlock_irqrestore(lock, flags) void __lockfunc _spin_unlock_irqrestore(spinlock_t *lock, unsigned long flags) { _raw_spin_unlock(lock); local_irq_restore(flags); preempt_enable(); } static inline void _raw_spin_unlock(spinlock_t *lock) { #ifdef CONFIG_DEBUG_SPINLOCK BUG_ON(lock->magic != SPINLOCK_MAGIC); BUG_ON(!spin_is_locked(lock)); #endif __asm__ __volatile__( spin_unlock_string ); } Raw赤裸的解锁,表示最低沉的解锁原理。 #define spin_unlock_string "xchgb %b0, %1" :"=q" (oldval), "=m" (lock->slock) :"0" (oldval) : "memory" 加1.解锁 你也许还要参考linux内核分析的书籍,才能领会更多。
|