虚拟仪器应用领域
虚拟仪器技术在过去的25年里是如何发展的?
虚拟仪器技术一直在测试和测量领域广泛使用。而且,通过不断的LabVIEW革新和数以百计的测量硬件设备,虚拟仪器技术逐渐扩大了它所触及的应用范围。今天,NI率先将这一技术扩展到控制和设计部分。曾促进了测试发展的益处正开始加速控制和设计的发展。工程师和科学家不断提高对虚拟仪器的要求,以希望有效地满足世界范围的需要,他们正是这一加速背后的驱动力。
近来NI 加速测试、控制和设计创新的一个例子就是使用LabVIEW FPGA进行编程的基于FPGA的硬件。如果工程师需要一个新的硬件性能,如板载DSP,或者新的触发模式,您甚至可以在同样的软件中定义这种性能并且将它应用在板载的FPGA上。工程师和科学家一直可以通过使用LabVIEW和模块化I/O来创建高度集成的用户自定义系统,而现在他们也可以将可自定义配置能力扩展至硬件本身。这种用户可配置能力和透明度将会改变工程师建立测试系统的方式。
图9.LabVIEW使用户定义的仪器和可自定义的硬件成为可能
虚拟仪器给自动测试应用带来的益处是什么?
测试一直是虚拟仪器长期应用的领域。超过25,000家公司(大部分是测试和测量公司)使用NI的虚拟仪器。现在,许多公司都迅速地采用了具有高达200MS/s数字化性能的产品。PXI系统联盟拥有60多个成员,提供了数以百计的产品,而且数以万计的R&D、验证和产品测试工程师和科学家正在使用成千上万的仪器驱动。
而且,现在对于测试的需要越来越大。随着创新的步伐越来越快,希望新的不同的产品更快地进入市场的压力越来越大。消费者的期望在不断的增加。以电子市场为例,消费者要求不同的功能可以更低的成本在一个更小的空间得到集成。近年来经济的低迷并没有阻止革新的需要,但是却要求使用更少资源。满足这些需要是商业成功的一个因素——能够快速、一贯并且最可靠地满足这些需要的公司一定能在竞争中占有决定性的优势。
所有这些条件都驱使新的验证、检验和生产测试需要。一个能与创新保持同步的测试平台不是或有或无的,而是必需的。这个平台必须包含具有足够适应能力的快速测试开发工具以在整个产品开发流程中使用。产品快速上市和高效生产产品的需要要求高吞吐量的测试。为了测试消费者所要求的复杂多功能产品需要精确的同步测量能力,而且随着公司不断地结合创新以提供不同的产品,测试系统必须快速地调整以测试这些新特性。
虚拟仪器是对这些挑战的一种革新性解决方案。它将快速软件开发和模块化、灵活的硬件结合在一起从而创建用户定义的测试系统。虚拟仪器提供了:
- 用于快速测试开发的直观软件工具
- 基于创新商用技术的快速、精确的模块化I/O
- 具有集成同步功能的基于PC的平台,以实现高精确度和高吞吐量
虚拟仪器技术如何应用于控制和工业应用?
PC和PLC在控制和工业应用中都发挥着十分重要的作用。PC带来了更大的软件灵活性和更多的性能,而PLC则提供了优良的稳定性和可靠性。但是随着控制需求越来越复杂,加速性能并同时保持稳定性和可靠性就成为公认的需要。
独立的工业专家已经意识到了对工具的需要,这种工具应该能够满足不断增长的对更加复杂、动态、自适应和基于算法控制的需要。PAC正是工业的需求也是虚拟仪器的回答。
一个独立的研究公司定义了可编程自动控制器(PAC)来解决这个问题。ARC研究机构的Craig Resnick将PAC定义成:
- 多领域功能(逻辑、运动、驱动和过程)——这个概念支持多种I/O类型。逻辑、运动和其他功能的集成是不断增长的负责控制方法的要求。
- 单一的多学科开发平台——单一的开发环境必须能支持各种I/O和控制方案
- 用于设计贯穿多个机器或处理单元的应用程序的软件工具——这个软件工具必须能适应分布式操作。
- 一组de facto网络和语言标准——这个技术必须利用高投入技术。
- 开放式、模块化体系结构——设计和技术标准与规范必须是在实现中开放的、模块化的和可结合的。
PAC给PC软件的灵活性增添了PLC的稳定性和可靠性。LabVIEW软件和稳定、实时的控制硬件平台对于创建PAC是十分完美的。
虚拟仪器技术给设计带来的益处是什么?
使用各种软件设计工具的设计工程师必须使用硬件来测试原型。通常,在设计阶段和测试/验证阶段之间没有一个良好的接口,这就意味着设计必须经历一个完成阶段而后进入测试/验证阶段。测试阶段发现的问题需要不断反复设计阶段。
图10.测试在当今电子设备的设计和生产中发挥着重要的作用
事实上,开发过程有两个完全不同且分离的阶段——设计和测试是两个单独的实体。在设计方面,EDA工具厂商承受着巨大的压力与不断增长的半导体设计和生产集团复杂要求相互作用。工程师和科学家要求随着产品从原理图设计到仿真再到物理层,EDA应具有从一个工具到其他的工具可重复使用设计的能力。相似地,测试系统开发正朝模块化方式发展。这两个世界之间的间隙在传统上一直被忽视,直到在新的产品原型设计阶段才第一次引起注意。传统上,这一阶段是产品设计者使用台式仪器将物理原型与他们的设计对照,进行完整性检查以获得正确性。设计者手工地进行测量,在他们的仪器上探测电路并监测信号以发现问题或性能局限。随着设计反复地经历建立-测量-调整-重建立这个过程,设计者再次需要同样的测量。此外,这些测量可能十分复杂——需要频率、幅值和温度自始至终地随所采集和分析的数据而变动。由于工程师注重于设计工具,所以他们不愿意学习如何将他们的测试自动化。
具有内在集成属性的系统容易扩展并且能适应不断增长的产品功能。一旦需要新的测试,工程师只需要简单地给平台添加新的模块以完成测量。虚拟仪器软件的灵活性和虚拟仪器硬件的模块化使得虚拟仪器成为加速开发周期的必需。
虚拟仪器软件问题
为什么软件对于虚拟仪器如此重要?
每一个虚拟仪器都建立在灵活和强大的软件之上,这是通过具有创新精神的工程师或科学家应用所在领域的专业知识来自定义测量和控制应用来实现。
虚拟仪器软件可以划分成几种不同的类别。大部分人马上想到就是应用软件层。这是为建立一个应用所需的首要开发环境。它所包含的软件诸如LabVIEW、NI LabWindows/CVI(ANSI C)和NI Measurement Studio(Visual Studio 编程语言)。在此之上是测试执行层,一个集成了应用程序层开发的所有功能并提供系统范围数据管理的环境。下一层通常被忽略但是对于维持软件开发效率却十分重要。测量和控制服务层包括与所有硬件通信的驱动。它必须能存取和保存硬件功能和性能,也必须是可交互操作的——它必须与所有其他的驱动和可能成为解决方案一部分的众多模块化I/O类型协同工作。
图11.虚拟仪器软件
什么使得LabVIEW对于虚拟仪器如此完美?
LabVIEW是虚拟仪器的重要部分因为它提供了一个易于使用的应用程序开发环境,专门为工程师和科学家而设计。LabVIEW提供了许多强大的特性使得它与广泛的硬件和其他软件轻松连接。这一易于使用和其他特性提供了虚拟仪器软件开发环境所需的灵活性。结果就是用户定义的界面和用户定义的应用程序功能。
LabVIEW提供的众多强大特性之一就是图形化编程环境。利用LabVIEW,工程师和科学家可以通过在计算机屏幕上创建一个图形化的用户界面设计自定义的虚拟仪器。通过计算机屏幕,他们可以:
- 操作仪器程序
- 控制所选择的硬件
- 分析所采集的数据
- 显示结果
他们可以使用旋钮、按钮、表盘和图表自定义LabVIEW用户界面,或者前面板,从而仿效传统仪器的控制面板、创建自定义的测试面板或者可视化地表示过程控制和操作。
图12.LabVIEW虚拟仪器包括用户界面和应用程序逻辑
通过连接图标来创建方块图(对于工程师和科学家来说是自然设计符号)即可决定虚拟仪器的行为。利用图形化编程,工程师和科学家可以比通常的编程语言更快地开发系统,同时保持了创建各种应用程序所需的灵活性。LabVIEW是一个开放式环境,它包含了即时使用的库,从串行总线、以太网和GPIB通信到运动控制,数据采集和图像采集。
虚拟仪器是如何利用最新的软件趋势?
(still waiting from content from Nicole McGarry)
在如下HW问题之后建模
- Longhorn操作系统
- Visual Studio .NET语言
- 其他
什么是测量服务软件?
测量服务软件相当于I/O驱动软件层。然而,它不仅仅是一个驱动。虽然经常被忽视,但是它是快速开发应用程序所需的最重要元素之一。这一软件将虚拟仪器软件与用于测量和控制的硬件向连接。它包括直观的应用程序编程界面、仪器驱动、配置工具、快速I/O助手和其他包含在NI硬件产品之中的软件。NI测量服务软件提供了与NI硬件和NI应用程序开发环境的优化结合。
NI 测量&自动化浏览器和DAQ助手只是NI-DAQmx测量服务软件(应用在许多NI DAQ设备上)所包含的众多价值中的两个例子。NI也在每个M系列DAQ设备、USB DAQ设备以及其他许多设备上包含了免费的数据记录软件。
诸如测量&自动化浏览器之类的配置工具可以配置和测试I/O,以及存储、缩放、校准和收集通道混叠信息。这些工具对于以更快时间完成首次测量、发现并解决测试系统故障以及维护是十分重要的。
I/O助手是一个交互式工具,用来快速创建测量或刺激应用程序。以仪器I/O助手和DAQ助手为例。如下图所示的DAQ助手显示了一个无需编程即可配置常用数据采集参数的面板。易于使用的助手和强大编程环境的结合提供了快速的开发和满足广泛应用需要的能力。
Figure 13. DAQ Assistant, available with NI-DAQmx, simplifies data acquisition task creation.
图13. NI-DAQmx 里可得的DAQ助手简化了数据采集任务的创建
什么操作系统(OS)与NI虚拟仪器兼容?
NI为在流行的操作系统(包括Windows (XP/2000/NT)、Mac OS X、Linux、 PocketPC和PalmOS)上开发虚拟仪器提供了虚拟仪器软件支持和DAQ、GPIB及其他硬件支持。
除了这些常见的操作系统,NI也支持运行在实时操作系统之上的确定性测量和控制系统。实时平台为应用程序提供了框架,从而可以及时的按预期运行并具有增强的可靠性,而且无需交互作用即可单独运行。在桌面环境里开发之后,工程师或科学家编译代码并把它应用到NI实时硬件对象。
虚拟仪器硬件问题
虚拟仪器软件运行于什么硬件I/O和平台?
I/O在虚拟仪器中发挥着重要作用。为了加速测试、控制和设计,I/O硬件必须快速适应新的观念和产品。虚拟仪器以在可扩展的硬件平台里的模块化的形式提供了这种能力。
NI模块化I/O涵盖了各种不同的I/O类型,因此工程师和科学家可以在众多种类中选择I/O,包括模拟、数字、计数/计时、图像和运动。模块化I/O也包括模块化仪器,例如示波器、仪表、任意波形发生器、LCR仪表等等。利用各种出色的I/O,工程师可以随意选择任意应用程序所要求的I/O类型。细心的工程师确保了这些不同类型的I/O可以无缝地一起工作,这意味着他们可以有效地共享底板和定时资源。
包含I/O的标准硬件平台对于I/O模块化十分重要。手提和台式电脑提供了一个出色的平台,在这个平台上虚拟仪器可以使用已有的大部分标准,如USB、PCI、以太网和PCMCIA总想。通过使用这些标准总线,NI可以致力于测量硬件革新同时从不可避免的PC平台革新中受益(例如,USB2.0和PCI Express)。
图14.模块化I/O和可扩展的平台(如USB、PCI和PXI)提供了灵活性和可扩展性
除了使用标准平台之外,NI作为65个厂商联盟的一部分,极力推动用于虚拟仪器的PXI硬件平台。PXI是一个建立在PC技术之上的模块化I/O标准。它在基于PC的体系结构上增加了集成定时和同步、工业稳定性和增强的通道计数。今天,为PXI平台而创建的1000余种产品正在世界范围内为数以千计的公司使用。
选择合适的平台来创建虚拟仪器依赖于特定的应用要求。例如,便携性、精确的同步和采集速率都在选择平台时起到作用。
新的总线技术如USB 2.0和PCI Express如何提高虚拟仪器的性能?
与传统仪器相比,虚拟仪器利用了商业上可得的计算机技术进步来以更低的代价进行更快的、更高性能的测量。其中的一个例子就是利用PC数据总线。在仪器通信接口如串口和GPIB数十年几乎保持不变的时候,新的PC总线在带宽和易用性上提供了巨大的提高。从20世纪60年代中期开始,根据摩尔定律,PC处理能力几乎每18个月翻一番。现在,数据总线如PCI Express和USB 2.0正在速度上进行相似的跳跃。良好的虚拟仪器软件利用了这些最新的技术同时将对虚拟仪器应用的影响最小化。
32位、33MHz的PCI总线所提供的132MB/s的带宽仍然存在于大多数台式PC,这正好与10年前的插入式外设形成对照,但是现在可以被单一的设备所垄断,例如串行ATA驱动器。而且1G网卡—1000mb/s—使用了大约95%的可从PCI总线获得的带宽。PCI总线体系结构要求总线上所有的设备共享可得的132MB/s的带宽,因此高带宽设备如串行ATA驱动器和1G网卡将抑制PCI总线上的其他设备。为了弥补这些局限,一个成为PCI Express的新串行总线近来开始应用在新PC上。PCI Express保持了与PCI的软件兼容性,但是用高速(2.5Gb/s)的串行总线替代了物理总线。数据在被成为“信道”的发射和接收信号对以数据包的形式传送,具有大约单向每信道200MB/s的带宽。多信道可以结合在一起构成x1(乘1)、x2、x4和 x8的信道带宽,而且与总线上所有设备共享带宽的PCI不同,这个带宽是提供给系统中每个设备的。PCI Express给虚拟仪器带来的益处是显而易见的。插入式设备如数据采集设备和抓帧器可以利用提高的带宽来实现更快的采集和更高的吞吐量,而且多系统设备可从有保障的带宽可用性中受益。
图15.PC总线技术的发展
现已作为所有新的台式和便携式PC上标准的USB 2.0也为虚拟仪器提供了显著的益处。最初时为诸如键盘和鼠标等外设与PC的连接而创建的USB迅速地成为普遍的标准,用来向PC和电子设备(包括数字照相机、MP3播放器甚至数据采集设备)中发送和接收数据。USB即插即用的特性使得可用性和设备的移动性十分简单。PC在一个新设备插入时自动检测,寻找设备识别,并且适当地配置所需的驱动。此外,USB是热插拔的,所以不同于其他数据总线,在添加或去除设备之前无需关机。与USB 1.1相比,USB 2.0的高速度提高了数据吞吐量,将带宽增加至480Mb/s。
所有的PC都装有USB 2.0端口,而且PCI Express正在成为一种全新的插入式总线标准。正如Intel、Dell、HP和其他厂商继续开发基于这些技术的系统和组件,规模经济将会继续提高性能并减少成本。虚拟仪器和NI产品将继续利用这些总线技术的发展来提供更低价格但更快速的测试和测量产品。
以太网给虚拟仪器技术带来的益处是什么?
虚拟仪器系统频繁地使用以太网用于远程测试系统控制、分布式I/O和企业数据共享。使用以太网的首要益处就是成本。几乎在所有的情况下,以太网都处于测量系统之上,所以通常它只给测量系统本身增添极少成本。以太网提供了一个低成本、适中吞吐量的方法来实现交换数据和远程控制命令。然而,由于基于数据包的体系结构,以太网不是确定性的而且相对高的等待时间。对于某些应用如仪器系统,缺乏确定性和高等待时间使得以太网成为集成邻近I/O模块的拙劣选择。这些情形最好使用专有总线如PXI、VXI和GPIB来实现。
通常,一个虚拟仪器系统使用其他总线与以太网配合。典型地,一个网络节点包含模块化I/O簇。每个簇使用高速、低等待时间的总线在不同I/O模块之间交换数据。为了与相邻节点通信、向远程地点传输数据或者从远程地点接受命令,网络节点使用以太网。
图16.基于以太网/LAN的虚拟仪器系统实例
2/2 首页 上一页 1 2 |