CPLD在双轴位置检测系统中的应用
1 引言数控机床的加T精度主要南位置检测系统的精度决定,位置检测系统一般包括传感器(旋转变压器,光电编码器,光栅)、四倍频鉴相电路、计数电路等,系统通过这些检测电机的位移和速度,发出反馈信号,从而构成闭环或半闭环控制。形成差值控制电机,进而提高机床加工精度。数控机床位置检测系统采用模块化和开放式控制,可减少电路规模和提高数控机床的加工精度,形成高密度、高精度的数控机床。采用数字电路的传统位置检测系统面积庞大、精度不高、发应速度慢,而采用CPLD器件代替数字电路正好弥补这些缺陷。2 CPLD简介和器件选型利用可编程逻辑器件CPLD(Complex Programable Logic Device)设计硬件系统非常方便。工程师通过传统的原理图输入法,或是硬件描述语言自由设计数字系统。通过软件仿真验证事先设计的正确性。在PCB完成后,还可利用CPLD在线修改能力,随时修改设计而不必改动硬件电路。因此,使用CPLD可大大加快硬件电路设计进程,减少PCB面积,提高系统可靠性。根据所需逻辑门数量以及将与其连接的电路引脚数,选用ALTERA公司的EPM570T144C5型CPLD,该器件采用TQFP144封装,内部有570个逻辑单元,相当于440个宏单元,而此前常用的EPM7128只有128个宏单元。EPM570T144C5内部有2个I/O分区,共116个通用I/O,引脚延时为8.8 ns,满足位置检测系统所需的90多个通用I/O和延时不超过10 ns的设计要求。3 位置检测系统组成在介绍位置检测系统前,先简要介绍伺服电机控制系统(图1)。CPLD先对伺服电机光电编码器上发出的反馈信号进行译码、四倍频鉴相计数,然后将计数值存入锁存器,当用于电机控制的DSP控制器对CPLD进行读操作时,CPLD将锁存器里的计数值通过三态门输出给DSP控制器,由其控制电机的位移和速度。位置检测系统采用CPLD器件实现硬件电路功能,用VHDL语言编程实现译码器、四倍频鉴相计数器、选通器等模块。图2为位置检测系统组成原理图。图2 中,光电编码器A和四倍频鉴相计数器A(光电编码器B和四倍频鉴相计数器B)构成单轴计数电路,将两个单轴计数电路配合译码器、选通器则构成双轴计数电路,就是用译码器控制选通器,以选通两个计数器的计数结果并传输到总线.总线和选通器之间增加三态门进行控制。这样就实现双轴位置检测。4 系统设计该系统设计的主要部分为伺服电机控制系统中的位置检测系统。在Ouartus II开发环境下设计系统,系统设计包括四倍频鉴相计数器、二四译码器和选通器的VHDL程序设计,如图3所示。通过图2所示的原理框图,将该系统设计的各个模块组合起来形成顶层文件,构成双轴的检测系统。图3中YMO模块为译码电路,用来选通哪轴输出,Y0、Y2用来控制计数器的清零与计数,Y1控制选通器选通,译码器真值表如表1所示。四倍频鉴相计数器的VHDL程序代码如下:5 系统仿真图4为系统仿真结果。当译码器控制信号AB=00时,可看出 A1超前B1,所以轴1正转;B2超前A2所以轴2反转。三态门使能信号EN=1时,数据选择器选通G口所对应的汁数器,即轴2,清零F口对应计数器,即对轴1清零。并将计数结果传输到总线,输出信号H从FFF 变化到FF8表明轴2反转,因此汁数器逆向计数。同时在AB译码器控制信号改变时和轴1,轴2正反转的其他情况时,仿真结果均正确,满足双轴位置检测系统设计。6 结束语在现代数控系统中,采用 CPLD实现位置检测系统已成为主流。新一代CPLD产品MAX II EPM570以面积小、集成度高和 GPIO口多等特点使得电路板集成度和抗干扰性都得以提高,方便结合DSP控制伺服电机位臀。总之,CPLD器件的发展使得逻辑电子电路的设计更灵活、方便。它将推动数控机床甚至工业各领域的发展。